

HT92112/HT92122 Low Power OPAMP

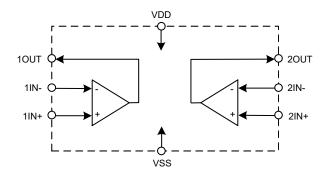
Features

- · Wide Operating Voltage
- · Low input offset voltage
- · Low Quiescent Current
- Unity Gain Stable (HT92112)
- Non-unity Gain Stable (HT92122)
- · Rail to Rail input and output operation
- -40°C to +85°C Operating Temperature Range
- Dual amplifiers per package
- Package types: 8-pin SOP

Applications

- · Tollbooth Tags
- · Wearable Products
- Temperature Measurement
- · Battery Powered Systems

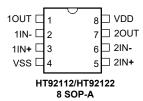
General Description


The HT92112/HT92122 family of low power operational amplifiers offers the benefits of low power consumption, low offset voltage and low offset drift. They have low 1/f noise and have good PSRR and CMRR characteristics. The devices also provide full rail-to-rail input and output operation. The HT92112 has a gain bandwidth product of 14kHz while the HT92122 has a gain bandwidth product of 100kHz. These devices operate with a single supply voltage as low as 1.4V and with a low supply current of $1\mu A/amplifier$ (Max.). These low power operational amplifiers can be implemented in a wide range of applications for portable devices and battery powered equipment.

With their single supply operation and low power consumption features coupled with their low offset voltage these operational amplifiers are suitable for use in a wide range of applications. With regard to packaging, both devices are supplied in 8-pin SOP package formats.

Selection Table

Device Name	Amplifiers	Operating Voltage	Gain Bandwidth (Typ.)	V _{os} (Max.)	ΔV _{os} /ΔT _A (Typ.)	Slew Rate (Typ.)	Package Type
HT92112	2	1.4V~5.5V	14kHz	3mV	2µV	0.003V/µs	8SOP
HT92122	2	1.4V~5.5V	100kHz	3mV	2µV	0.024V/µs	8SOP


Block Diagram

Rev. 1.10 1 October 04, 2021

Pin Assignment

Pin Description

Pin Number	Pin Name	Description	
1	10UT	Output – OPA1	
2	1IN-	Inverting Input – OPA1	
3	1IN+	Non-inverting Input – OPA1	
4	VSS	Negative Power Supply	
5	2IN+	Non-inverting Input – OPA2	
6	2IN-	Inverting Input – OPA2	
7	2OUT	Output – OPA2	
8	VDD	Positive Power Supply	

Absolute Maximum Ratings

Supply VoltageV _{SS} -0.3V to 6.0V	I _{OL} Total 80mA
Input Voltage $V_{\text{SS}}0.3V$ to $V_{\text{DD}}\text{+-}0.3V$	I _{OH} Total80mA
Storage Temperature50°C to 150°C	Total Power Dissipation500mW
Operating Temperature40°C to 85°C	

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

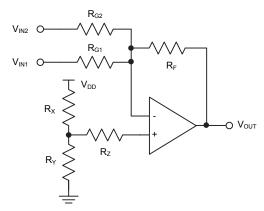
Rev. 1.10 2 October 04, 2021

Electrical Characteristics

HT92112

Symbol	Parameters	Conditions	Min.	Тур.	Max.	Unit		
_	aracteristics	Conditions	141111.	יאף.	max.	Onic		
V _{os}	Input Offset Voltage	V _{CM} =V _{SS}	-3		3	mV		
$\Delta V_{OS}/\Delta T_A$	Input Offset Voltage Drift with	V _{CM} =V _{SS} , Ta=-40°C ~ 85°C	_	±2	_	μV/°C		
_	Temperature	Ta=25°C		1		·		
I _B	Input Bias Current Input Offset Current	Ta=25°C	_	1	_	PA pA		
I _{os}	'	1a-25 C		10 ¹³ 6		PΑ		
Z _{CM}	Common Mode Input Impedance	_	_	10 6	_	Ω pF		
Z _{DIFF}	Differential Input Impedance	_	_	10 116	_ ""			
V _{CML}	Common Mode Input Voltage Range Low	_	_	_	V _{SS} -0.3			
V_{CMH}	Common Mode Input Voltage Range High	_	V _{DD} +0.3	_	_	_ "		
		V_{DD} =5V, $V_{CM=}$ -0.3V to 5.3V	62	80	_			
CMRR	Common Mode Rejection	V_{DD} =5V, V_{CM} =2.5V to 5.3V	60	75	_	dB		
		V_{DD} =5V, V_{CM} =-0.3V to 2.5V	60	80	_			
PSRR	Power Supply Rejection	V _{CM} =V _{SS}	70	85	_	dB		
A _{OL}	DC Open-Loop Gain (Large Signal)	R_L =50k Ω to V_L , V_{OUT} =0.1V to V_{DD} -0.1V	95	115	_	dB		
Output C	haracteristics							
V _{OL}	Minimum Output Voltage Swing	R_L =50k Ω to V_L , 0.5V input overdrive	_	_	V _{SS} +10	,,		
V _{OH}	Maximum Output Voltage Swing	R_L =50k Ω to V_L , 0.5V input overdrive	V _{DD} -10	_	mV			
V_{OVR}	Linear Region Output Voltage Swing	$R_{L=}50k\Omega$ to V_L , $A_{OL} \ge 95dB$	V _{SS} +100	_	V _{DD} -100	mV		
	0 1 10 10 10	V _{DD} =1.4V	_	2	_	mA		
I _{sc}	Output Short Circuit Current	V _{DD} =5.5V	25	30	_	mA		
Power Su	ıpply							
_	Supply Voltage	_	1.4	_	5.5	V		
Ι _Q	Quiescent Current per Amplifier	I _{OUT} =0, Ta=25°C	0.3	0.6	1.0	μA		
		Temperature		*				
Та	Operating Temperature Range	_	-40	_	85	°C		
Dynamic	Dynamic Response (C _L =60pF)							
GBWP	Gain Bandwidth Product	_	7	14	_	kHz		
SR	Slew Rate	_	1	3	_	V/ms		
PM	Phase Margin	G=+1V/V	45	60	_	degree		
Noise (C _L =60pF)								
Eni	Input Noise Voltage	f=0.1Hz to 10Hz	_	8	12	μV _{P-P}		
e _{ni}	Input Noise Voltage Density	f=1kHz	_	180	350	nV/√ Hz		

Rev. 1.10 3 October 04, 2021


HT92122

 $\label{eq:Unless otherwise indicated} Unless otherwise indicated, $V_{DD}=1.4V\sim5.5V$, $V_{SS}=GND$, $Ta=25^{\circ}C$, $V_{CM}=V_{DD}/2$, $V_{OUT}=V_{DD}/2$, $V_{L}=V_{DD}/2$, $R_{L}=1M\Omega$ to $V_{L}=1.00$ to V

Symbol	Parameters	Conditions	Min.	Тур.	Max.	Unit		
Input Ch	Input Characteristics							
Vos	Input Offset Voltage	V _{CM} =V _{SS}	-3	_	3	mV		
$\Delta V_{OS} / \Delta T_A$	Input Offset Voltage Drift with Temperature	V _{CM} =V _{SS} , Ta=-40°C ~ 85°C	_	±2	_	μV/°C		
I _B	Input Bias Current	Ta=25°C	_	1	_	pА		
Ios	Input Offset Current	Ta=25°C	_	1	_	pА		
Z _{CM}	Common Mode Input Impedance	_	_	10 ¹³ 6	_	Ollac		
Z _{DIFF}	Differential Input Impedance	_	_	10 ¹³ 6	_	Ω pF		
V _{CML}	Common Mode Input Voltage Range Low	_	_	_	V _{SS} -0.3	W		
V _{CMH}	Common Mode Input Voltage Range High	_	V _{DD} +0.3	_	_ V			
		V_{DD} =5V, V_{CM} =-0.3V to 5.3V	62	80	_			
CMRR	Common Mode Rejection Ratio	V _{DD} =5V, V _{CM} =2.5V to 5.3V	60	75	_	dB		
		V_{DD} =5V, V_{CM} =-0.3V to 2.5V	60	80	_			
PSRR	Power Supply Rejection Ratio	V _{CM} =V _{SS}	70	85	_	dB		
A _{OL}	DC Open-Loop Gain (Large Signal)	R_L =50K Ω to V_L , V_{OUT} =0.1V to V_{DD} -0.1V	95	115	_	dB		
Output 0	Output Characteristics							
V _{OL}	Minimum Output Voltage Swing	R_L =50K Ω to V_L , 0.5V input overdrive	_	_	V _{SS} +10	mV		
V _{OH}	Maximum Output Voltage Swing	R_L =50K Ω to V_L , 0.5V input overdrive	V _{DD} -10	_	n			
V _{OVR}	Linear Region Output Voltage Swing	$R_L=50K\Omega$ to V_L , $A_{OL} \ge 95dB$	V _{ss} +100	_	V _{DD} -100	mV		
	Output Shart Circuit Current	V _{DD} =1.4V	_	2	_	mA		
I _{sc}	Output Short Circuit Current	V _{DD} =5.5V	25	30	_	mA		
Power S	upply							
_	Supply Voltage	_	1.4	_	5.5	V		
Ι _Q	Quiescent Current per Amplifier	I _{OUT} =0, Ta=25°C	0.3	0.6	1.0	μΑ		
Temperature								
Та	Operating Temperature Range	_	-40	_	85	°C		
Dynamic Response (C _∟ =60pF)								
GBWP	Gain Bandwidth Product	_	50	100	_	kHz		
SR	Slew Rate		7	24	_	V/ms		
PM	Phase Margin	G=+10V/V	50	80	_	degree		
Noise (C _L =60pF)								
E _{ni}	Input Noise Voltage	f=0.1Hz to 10Hz		8	12	μV_{P-P}		
e _{ni}	Input Noise Voltage Density	f=1kHz	_	180	350	nV/√Hz		

Application Circuit

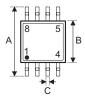
 $R_{\rm VIN-}\!\!=\!\!1/\!(1/\!(R_{\rm G1})\!+\!1/\!(R_{\rm G2})\!+\!1/\!(R_{\rm F})\!),\,R_{\rm VIN-}\!\!=\!\!total$ resistance at the inverting input.

 $R_{\text{VIN+}} = 1/(1/(R_{\text{X}}) + 1/(R_{\text{Y}})) + R_{\text{Z}} \;, \; R_{\text{VIN+}} = \text{total resistance at the non-inverting input,} \; R_{\text{VIN+}} = R_{\text{VIN-}} =$

Rev. 1.10 5 October 04, 2021

Package Information

Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the <u>Holtek website</u> for the latest version of the <u>Package/Carton Information</u>.


Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.

- Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- The Operation Instruction of Packing Materials
- Carton information

Rev. 1.10 6 October 04, 2021

8-pin SOP (150mil) Outline Dimensions

Cumbal	Dimensions in inch					
Symbol	Min.	Nom.	Max.			
A	_	0.236 BSC	_			
В	_	0.154 BSC	_			
С	0.012	_	0.020			
C,	_	0.193 BSC	_			
D	_	_	0.069			
E	_	0.050 BSC	_			
F	0.004	_	0.010			
G	0.016	_	0.050			
Н	0.004	_	0.010			
α	0°	_	8°			

Symbol	Dimensions in mm					
Symbol	Min.	Nom.	Max.			
А	_	6 BSC	_			
В	_	3.9 BSC	_			
С	0.31	_	0.51			
C,	_	4.9 BSC	_			
D	_	_	1.75			
E	_	1.27 BSC	_			
F	0.10	_	0.25			
G	0.40	_	1.27			
Н	0.10	_	0.25			
α	0°	_	8°			

Rev. 1.10 7 October 04, 2021

Copyright® 2021 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.

Rev. 1.10 8 October 04, 2021